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1 Theoretical Foundations

Here, we describe the theoretical foundations of our main result. In particular, we formally define
the reflection time tY (Fig. 1B) and prove that, if X positively regulates Y , then the regulation-
detection score 〈RX→Y 〉 = 1. Similar arguments can be used for negative regulations.

Definition 1. If Y (t) is a smooth time series with one maximum (tM ) and one minimum (tm)
over a period, then for t 6= tM , tm, we define the reflection time tY such that Y (tY ) = Y (t) and
tY 6= t. If t = tM , tm, then tY := t.

Theorem 1. Let X(t) and Y (t) be smooth time series with period τ that have one maximum
and one minimum over a period τ and solve the ODE

dY

dt
= f(X,Y ). (S1)

If f is strictly monotonically increasing in X (i.e., X positively regulates Y ), then R
tY
X→Y (t) =

X
tY
d (t) · Ẏ tY

d (t) ≥ 0 for all t, where

X
tY
d (t) = X(t)−X(tY )

Ẏ
tY
d (t) = Ẏ (t)− Ẏ (tY ).

Moreover, 〈RX→Y 〉 = 1, where

〈RX→Y 〉 :=

∫ τ

0
R

tY
X→Y (t)dt

∫ τ

0
|RtY

X→Y (t)|dt
.
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Proof. First,
R

tY
X→Y (t) = X

tY
d (t) · Ẏ tY

d (t)

= (X(t)−X(tY ))(Ẏ (t)− Ẏ (tY ))

= (X(t)−X(tY ))·

(f(X(t), Y (t))− f(X(tY ), Y (tY ))) ≥ 0.

The last inequality holds because, by assumption, f(X,Y ) is a monotonically increasing function
of X when Y has the same value (i.e., Y (t) = Y (tY )). Furthermore, RtY

X→Y (t) cannot be 0
for all t. For the sake of contradiction, assume that R

tY
X→Y (t) = 0 for all t. If RtY

X→Y (t) =
X

tY
d (t) · Ẏ tY

d (t) = 0, then X
tY
d (t) = 0 or Ẏ

tY
d (t) = f(X(t), Y (t)) − f(X(tY ), Y (tY )) = 0. If

f(X(t), Y (t)) − f(X(tY ), Y (tY )) = 0, then X(t) − X(tY ) = 0 as well because f is strictly
monotonically increasing in X. Therefore, if RtY

X→Y (t) = 0 for all t, then

X(t) = X(tY ) for all t (S2)

Next, from Eqns. (S1) and (S2),

Ẏ (t) = f(X(t), Y (t)) = f(X(tY ), Y (tY )) = Ẏ (tY ), (S3)

for all t. This implies that Ẏ (t) = Ẏ (tY ) = 0 given the nature of tY (e.g, if Y is increasing at
t, then Y is decreasing at tY ). Therefore, Ẏ (t) = 0 for all t, i.e., Y is constant. However, this
contradicts the assumption that Y is a smooth oscillating time series. Since R

tY
X→Y (t) ≥ 0 and

is a nonzero function, 〈RX→Y 〉 = 1.

2 Manual for the ION computational package

As described in the main text, we developed a computational package, ION (Inferring Oscillatory
Networks), to infer networks of biological oscillators (Fig. 4A). Accompanying MATLAB code
under a BSD-style license and examples are available at https://github.com/Mathbiomed/ION.
Additionally, the code is available under a CC-BY 4.0 License at
https://doi.org/10.6084/m9.figshare.16431408.v1.

1. Generate the data.csv file. The first column of the data.csv file should be the time points
at which the measurements were taken. The subsequent columns should be the data for
each variable at the respective time points. If the data are stored in an excel spreadsheet,
order the file as time points in column 1, data for variable 1 in column 2, data for variable
2 in column 3, etc., and then save it as a .csv file in the same directory as the code. Be
sure that there are no variable names at the top of the data.csv file (see Input 1 in Fig. S1
for the structure of the data.csv file).
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2. Update the regulation detection inputs.m file. Users need to specify the threshold
used to infer regulation and the data interpolation method, in particular, either ‘linear’
or ‘fourier’. The linear method will linearly interpolate the discrete data given in the
data.csv file to create a continuous data set. The fourier method will fit a Fourier series
to the discrete data to create a continuous data set.

(a) Update the threshold variable (Input 2 in Fig. S1). The variable threshold determines

the threshold for the
−→
R values accepted as interactions. For example, a threshold

of 0.99 means that we relax the condition
−→
R = (±1,−1) (Fig. 2A) up to ±0.99, i.e,

we accept any interaction that satisfies both |〈RX→Y 〉| > 0.99 and 〈RY→Y 〉 < −0.99.
Based on our analysis in Fig. 3, we recommend a threshold of 0.9, which we use for
inferring interactions given experimental data in Fig. 4.

(b) If linear method is chosen, update the variables ‘supportlength’ and ‘modelorder’ (In-
put 2 in Fig. S1). They need to be chosen so that the function movingslope.m

accurately estimates the derivatives at each time point of the data set [1]. The vari-
able ‘supportlength’ determines the number of points used for the moving window
average estimation of the derivative, so it should be at least 2 and no more than the
number of data points. If ‘supportlength’ is odd, then the derivative is estimated us-
ing a central sliding window. If ‘supportlength’ is even, then the moving window will
be moved backward by one element. For example, a ‘supportlength’ of 2 is equal to a
difference quotient, computed for instance using the MATLAB function diff. Next,
the variable ‘modelorder’ defines the order of the windowed model used to estimate
the slope. If ‘model order’ is 1 or less than the ‘supportlength’-1, then the model is
linear or a regression, respectively. If ‘modelorder’ is equal to ‘supportlength’-1, then
the method will be a sliding Lagrange interpolant.

(c) If fourier method is chosen, update the ‘num fourier’ variable (Input 2 in Fig. S2).
The variable ‘num fourier’ determines the number of Fourier series coefficients and
must be at least one and at most 8. For example, if ‘num fourier’ = 1, then the
algorithm fits the parameters a0, a1, b1, and ω to the data for each variable based
on the Fourier series of the form F (t) = a0 + a1 cos(2π · ω · t) + b1 sin(2π · ω · t).
The algorithm fits the Fourier series with the specified order using a nonlinear least-
squares method, specifically using the Levenberg-Marquardt method. To manually
adjust the Fourier fitting method and options (e.g., the method, function tolerance,
etc.), users need to update the function createFit.m.

3. If linear method is chosen, create extrema value files for each variable and save them in
the same directory as the scripts (Input 3 in Fig. S1). If the fourier method is chosen, the
interpolated time series has one maximum and minimum per cycle. However, if the linear
method is chosen, local extrema can occur due to noise. To distinguish such local extrema
from the global extrema per cycle, which is required to compute the reflection time (see
Fig. 1B), users need to input extrema value files for each variable in the data set. The files
should be saved as ek.csv where k corresponds to the variable. For example, the extrema
value file for variable 1 (the first data column) should be saved as e1.csv. The extrema
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value files should have time points in the first column and either 1 or −1 in the second
column for a global maximum and a global minimum in that period at the time point,
respectively. Users can generate these files by using the MATLAB function findpeaks.
The function findpeaks returns all local minima and maxima, which users can use to
decide the global minimum and maximum in each period.

4. Run the main.m function. The main.m function will read the inputs from the
regulation detection inputs.m file and run the algorithm with the user-specified method.
If the linear (fourier) method was chosen, the main.m function calls the
main linear.m (main fourier.m) script to run the algorithm. Users will see several fig-
ures being generated as well as several output files generated in a new “Outputs” directory,
which will be created within the same directory that the script is run:

(a) If the linear method is chosen, a derivative.fig file that plots the estimated derivative
values for all variables (Output 1 in Fig. S1).

(b) If the fourier method is chosen, files labeled Vark.fig, where k corresponds to the
variable number, showing the fourier fits for each variable (Output 1 in Fig. S2).

(c) Figures plotting the regulation-detection functions for each possible interaction (Out-
put 2 in Fig. S1 and S2). For example, the file Reg detect i onto i fix j.fig plots the

regulation-detection function R
tVj
Vi→Vi

(t) (see Fig. 1C), where Vi is variable i. Simi-

larly, the file Reg detect i onto j.fig plots the regulation-detection function R
tVj
Vi→Vj

(t)

(see Fig. 1C).

(d) A .mat file with the regulation-detection scores for each possible self-regulation (‘R self’
variable) and cross-regulation (‘R cross’ variable) (Output 3 in Fig. S1 and S2).

(e) A figure plotting the inferred network structure, inferred network graph.fig (Output
4 in Fig. S1 and S2). If R self(i, j) < −threshold and —R cross(i, j)| > threshold,
then the algorithm infers the interaction from Variable j to Variable i. Moreover, if
R cross(i, j) is positive (negative), then it is a positive (negative) regulation.

(f) A Final results.pdf document that reports each output listed above for reference.
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Time  Var 1  Var 2   Var 3

0,  0.01,  0.58,  0.10

5,  0.01,  0.54,  0.27

10,  0.012,  0.48,  0.43

15,  0.012,  0.42,  0.70

20,  0.012,  0.36,  0.93

25,  0.013,  0.32,  0.88
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Output 1 - Derivative

e1.csv  e2.csv  e3.csv

50, -1 95,  -1 20,  1

110,  1 210,  1 195, -1

270, -1 365,  1 285,  1

355,  1  

Input 3 - Extrema Value Files

e1.csv  e2.csv  e3.csv

50, -1 95,  -1 20,  1

110,  1 210,  1 195, -1

270, -1 365,  1 285,  1

355,  1  

e1.csv  e2.csv  e3.csv

50, -1 95,  -1 20,  1

110,  1 210,  1 195, -1

270, -1 365, - 285,  1

355,  1  

Self-Regulation scores Regulation Scores

-,           -0.92, -0.006  -,          -0.99, 0.21

0.71,            -,      -0.98  0.75,           -,     -1

-0.93,    -0.04,            -      -1,     0.98,           -

Output 3 - Regulation-detection scores

% Regulation detection inputs

threshold = 0.9; % The threshold used to infer direct  

% regulations.

method = 'linear'; %For linear interpolation or fourer  

% interpolation.  Please choose either ‘linear’ or ‘fourier’.

supportlength = 3; % Defines the number of points used 

% for the moving window. Update when using the       

% linear method.

modelorder = 1; % Defines the order of the windowed

% model used to estimate the derivative.  

% Update when using the linear method.

num_fourier = 8; % If the 'fourier' method is chosen  

% above, then this is the number of fourier series 

% coefficients to fit.  Update when using fourier.

Input 2 - regulation_detection_inputs.m

Figure S1: Sample input and output files for the ION package if the linear method is
chosen based on the experimental repressilator example (Fig. 4B). The data.csv (Input
1) file contains the time points in the first column and the data for each variable in subsequent
columns, separated by commas. The regulation detection inputs.m file (Input 2) is already in
the directory and should be updated according to the preferences of the user. If the user selects
the ‘linear’ method, then the user must choose appropriate values for the ‘supportlength’ and
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‘modelorder’ variables as well as generate extrema value files that list the time points at which
the global maxima (1) and minima (−1) happen for each period (Input 3). The algorithm
outputs the estimated derivatives for each variable (Output 1), plots of the regulation-detection
functions (Output 2), the regulation-detection scores (Output 3), and the inferred network
structure (Output 4).
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Self-Regulation scores Regulation Scores

-,            0.85, -0.980  -,          -0.99, 0.21

-1,                -,            1  0.75,           -,     -1

0.89,          -1,            -      -1,     0.98,           -

Output 3 - Regulation-detection scores

Output 4 - Inferred Network

Var 1

Var 2

Var 3

Time  Var 1  Var 2   Var 3

0.0051,  0.156,  0.436,  0.849

0.0103,  0.167,  0.447,  0.919

0.0154,  0.148,  0.439,  0.968

0.0206,  0.155,  0.485,  0.905

0.0257,  0.157,  0.435,  0.879

0.0308,  0.158,  0.485,  0.969

0.0359,  0.144,  0.485,  0.937

0.0411,  0.160,  0.470,  0.947

0.0463,  0.138,  0.481,  1.033
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.

.

.
.
.
.

.

.

.
.
.
.

0

0.25

V
a

ri
a

b
le

 1

Variable 1
Fourier Fit

Output 1 - Fourier Fits

Output 2 - Regulation-detection functions

Regulation-detection fun. for Var. 1 onto Var. 1 fixing Var. 2

0 1
Norm. time

-0.05

0

0.2

R
e

g
u

la
ti
o

n
 d

e
te

c
ti
o

n
 v

a
lu

e

Regulation-detection fun. for Var. 2 onto Var. 1

0
-0.7

0

0.1

R
e

g
u

la
ti
o

n
 d

e
te

c
ti
o

n
 v

a
lu

e

% Regulation detection inputs

threshold = 0.9; % The threshold used to infer direct  

% regulations.

method = 'linear'; %For linear interpolation or fourer  

% interpolation.  Please choose either ‘linear’ or ‘fourier’.

supportlength = 3; % Defines the number of points used 

% for the moving window. Update when using the       

% linear method.

modelorder = 1; % Defines the order of the windowed

% model used to estimate the derivative.  

% Update when using the linear method.

num_fourier = 8; % If the 'fourier' method is chosen  

% above, then this is the number of fourier series 

% coefficients to fit.  Update when using fourier.

Input 2 - regulation_detection_inputs.m

1
Norm. time

0 1
Norm. time

Figure S2: Sample input and output files for the ION package if the fourier method
is chosen based on the Kim-Forger model with added noise (Fig. 2B). The data.csv
(Input 1) file contains the time points in the first column and the data for each variable in
subsequent columns, separated by commas. The regulation detection inputs.m file (Input 2) is
already in the directory and should be updated according to the preferences of the user. If the
user selects the ‘fourier’ method, then the algorithm fits a Fourier series to each variable with
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the number of coefficients specified by the variable ‘num fourier’ variable (Input 2). The al-
gorithm outputs the Fourier fits for each variable (Output 1), plots of the regulation-detection
functions (Output 2), the regulation-detection scores (Output 3), and the inferred network
structure (Output 4).

3 Optimizing the threshold value

In Figure 4, we chose a threshold value of 0.9 based on the robustness analysis in Figure 3.
However, depending on whether the goal is decreasing false-positive or negative predictions, one
can adjust the threshold (i.e., increase or decrease) the threshold. For this, we define

PX→Y =

{

min |
−→
R | if RY→Y < 0

0 otherwise.
(S4)

The value of PX→Y is between 0 and 1, and when it becomes closer to 1, the regulation X → Y

is more likely to be true.

In Figure S3, we plot the values PX→Y for all possible regulations of the experimental repres-
silator example (Figure S3A), the mixed repressilator example (Figure S3B), and the estradiol
example (Figure S3C). In each example, there is a significant drop off in the value PX→Y when
moving from the correct to incorrect interactions. That is, the PX→Y values appear to exhibit a
bi-modal distribution, where the values from the correct interactions are close to 1, and the val-
ues of the incorrect interactions taper off uniformly to 0. Thus, we expect that a natural choice
of threshold can often be obtained from such bi-modal distributions, by plotting the distribution
of PX→Y values.

Furthermore, setting a higher PX→Y threshold value decreases the number of false positives
but increases the number of false negatives. On the other hand, lowering the PX→Y threshold
decreases the number of false negatives but increases the number of false positives. Thus, users
need choose the threshold value based on the level of precision or accuracy required from the
specific application. Users are encouraged to examine the plot of the distribution of the PX→Y

values provided by ION to determine an appropriate threshold for their specific application.

4 Description of the in silico models

4.1 Kim-Forger Model

The Kim-Forger model describes the core transcriptional-translational feedback loop in the
molecular circadian clock (Fig. 2B) [2]. It is similar to the Goodwin model in that a protein
product represses the transcription of its mRNA. However, the repression mechanism is not a
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λ cI

TetR

LacI

Inferred regulation No inferred regulation

TetR
λ cI

LacI

TetR (shift.)
λ cI (shift.)

LacI (shift.)

TRIP1

hER

POLII

HDAC

0
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0

1

0

1
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C

Figure S3: PX→Y values for the three experimental data sets in Figure 4. PX→Y (Eqn.
(S4)) of all possible interactions is plotted for (A) the repressilator example (Figure 4B), (B)
the mixed repressilator example (Figure 4C), and (C) the estradiol example (Figure 4C). Here
PX→Y = 0.9 (solid line) is used as the threshold for inference.
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Hill-type repression mechanism as in the Goodwin oscillator, but rather a protein sequestration
mechanism where tight binding of the activator and repressor sequesters the activator protein,
which in turn represses its activity. The model is given by the following system of ODEs.

dM

dt
= k1f(P )− k2M

dPC

dt
= k1M − k3PC

dP

dt
= k1PC − k4P

f(z) =
At −Kd − z +

√

(At −Kd − P )2 − 4AtKd

2At

.

Here, the variable M is the repressor mRNA concentration; PC is the cytosolic repressor protein
concentration; P is the nuclear repressor protein concentration. The parameter At is the total
activator concentration, and Kd is the dissociation constant between the activator and repressor
(closer to 0 means tighter binding). As in [3], we simulate the Kim-Forger model with the
parameters k1 = 1, k2 = 0.16, k3 = 0.29, k4 = 0.3, At = 0.6, and Kd = 10−5.

4.2 Frzilator

The frzilator model consists of a negative feedback loop that models the oscillations in a cascade
of covalent modifications in Myxococcus xanthus [4] (Fig. 2C). The mathematical model uses
Michaelis-Menten dynamics to model the negative feedback and is given by the equations

df

dt
= φ

(

1− f

0.01 + (1− f)

)

− df

(

f

0.005 + f

)

e

dc

dt
= kc

(

1− c

0.005 + (1− c)

)

f − dc

(

c

0.005 + c

)

dc

dt
= ke

(

1− e

0.005 + 1− e

)

− de

(

e

0.005 + e

)

.

As in [3], we simulate the system with the nominal parameter values φ = 0.08, kc = 4, ke = 4,
df = 1, dc = 2, and de = 2.

4.3 Goodwin Oscillator

The Goodwin model describes the action of a protein product repressing its mRNA [5] (Fig.
2D). The transcriptional regulation is described by a Hill function, where the Hill coefficient
is an upper bound for the number of repressor proteins that bind to the promoter [6]. A high
Hill coefficient is required for the system to generate sustained oscillations. We simulated the
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Goodwin oscillator from the following system of ODEs.

dM

dt
=

1

1 + P 10
3

− 0.4M

dP1

dt
= M − 0.4P1

dP2

dt
= P1 − 0.4P2

dP3

dt
= P2 − 0.4P3

4.4 Kim-Forger Model with Outputs

We augment the original Kim-Forger model (Section 4.1) so that each component promotes the
production of one output, e.g., M positively regulates XM (Fig. 2F). The system of ODEs is
given below.

dM

dt
= k1f(P )− k2M

dPC

dt
= k1M − k3PC

dP

dt
= k1PC − k4P

dXM

dt
= k5

Mn1

1 +Mn1

− k6XM

dXPC

dt
= k7

Pn2

C

1 + Pn2

C

− k8XPC

dXP

dt
= k9

Pn3

1 + Pn3

− k10XP

f(z) =
At −Kd − z +

√

(At −Kd − P )2 − 4AtKd

2At

.

Here, the parameters k1 through k4 are the same as in Section 4.1. We simulate the model with
the parameters k5 = 0.5, k6 = 0.59, k7 = 0.23, k8 = 0.98, k9 = 0.08 and k10 = 0.63 and Hill
coefficients n1 = 10, n2 = 15, and n3 = 20.

4.5 Repressilator

The repressilator is a synthetic feedback loop that consists of three genes and three proteins
where the mRNAs translate to the respective proteins, which in turn repress the transcription
of the next mRNA (Fig. 2G) [7]. The model is given by the following ODEs.
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dM1

dt
=

α

1 + Pn
3

−M1

dP1

dt
= β(M1 − P1)

dM2

dt
=

α

1 + Pn
1

−M2

dP2

dt
= β(M2 − P2)

dM3

dt
=

α

1 + Pn
2

−M3

dP3

dt
= β(M3 − P3),

where α = 7, β = 3, and n = 10.

5 Complete results of in silico and experimental network infer-
ence (Figs. 2 and 4)

In Tables S1-S5, we report the complete results of our network inference procedure applied to
the in silico examples in Fig. 2. In Tables S6-S8, we report the complete results of our network
inference procedure applied to the experimental data sets (Fig. 4). The inferred interactions are
the interactions that pass Rules 1-3 (Fig. 2A) with a threshold value of 0.90. Each table cell is
(〈RX→Y 〉, 〈RY→Y 〉) where X is the column variable and Y is the row variable.

f c e

f – (−1, 1) (−1,−1)
c (1,−1) – (−1, 0.99)
e (1,−0.71) (1,−1) –

Table S1: Calculated regulation-detection scores for the Frzilator oscillator example (Fig. 2C).

M P1 P2 P3

M – (−1, 0.98) (−1, 0.61) (−1,−1)
P1 (1,−1) – (−1, 0.92) (−1, 0.21)
P2 (1,−0.30) (1,−1) – (−1, 0.64)
P3 (1, 0.06) (1,−0.23) (1,−1) –

Table S2: Calculated regulation-detection scores for the Goodwin oscillator example (Fig. 2D).
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M1 PC P M2 P1 P2 P3

M1 – (−1, 0.68) (−1,−1) (−0.90,−0.56) (−0.17,−0.39) (0.87,−0.22) (1,−0.23)
PC (1,−1) – (−1, 1) (−1,−0.84) (−0.90,−0.54) (0.11, 0.04) (0.98, 0.81)
P (1, 0.76) (1,−1) – (−1,−0.18) (−1,−0.87) (−0.97,−0.92) (0.03,−0.15)
M2 (0.75,−0.25) (0.99,−0.17) (1,−0.23) – (−1, 0.91) (−1,−0.02) (−1,−1)
P1 (−0.28,−0.26) (0.82, 0.18) (1, 0.43) (1,−1) – (−1, 1) (−1, 0.36)
P2 (−0.92,−0.85) (−0.22,−0.54) (0.97, 0.68) (1,−0.42) (1,−1) – (−1, 1)
P3 (−1,−0.97) (−0.97,−0.97) (−0.03,−0.55) (1, 0.76) (1,−0.68) (1,−1) –

Table S3: Calculated regulation-detection scores for the Kim-Forger, Goodwin independent cycle
example (Fig. 2E).

M1 PC P XM XPC
XP

M1 – (−1, 0.65) (−1,−1) (−1, 1) (−1,−0.75) (−0.99,−0.91)
PC (1,−1) – (−1, 1) (1,−0.92) (−1, 0.87) (−1, 0.51)
P (1, 0.87) (1,−1) – (1,−0.87) (1,−0.97) (−1, 1)
XM (1,−1) (−1, 0.45) (−1,−0.40) – (−1,−0.05) (−1,−0.97)
XPC

(1,−0.03) (1,−1) (−1, 0.69) (1,−0.08) – (−1, 0.35)
XP (0.98, 0.31) (1, 0.12) (1,−1) (0.99, 0.21) (1,−0.51) –

Table S4: Calculated regulation-detection scores for the Kim-Forger with outputs example (Fig.
2F).

M1 P1 M2 P2 M3 P3

M1 – (−1, 1) (1, 0.70) (1, 0.17) (−1,−0.85) (−1,−1)
P1 (1,−1) – (1, 0.98) (1, 0.90) (−1,−0.23) (−1,−1)
M2 (−1,−0.82) (−1,−1) – (−1, 1) (1, 0.71) (0.22)
P2 (−1,−0.15) (−1,−1) (1,−1) – (1, 0.98) (1, 0.90)
M3 (1, 0.79) (1, 0.33) (−1,−0.80) (−1,−1) – (−1, 1)
P3 (1, 0.99) (1, 0.93) (−1,−0.13) (−1,−1) (1,−1) –

Table S5: Calculated regulation-detection scores for the repressilator example (Fig. 2G).

P1 P2 P3

P1 – (−0.99,−0.92) (0.21,−0.006)
P2 (0.75, 0.71) – (−1,−0.98)
P3 (−1,−0.93) (0.98,−0.04) –

Table S6: Calculated regulation-detection scores for the experimental repressilator example (Fig.
4B).
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P 1
1

P 1
2

P 1
3

P 2
1

P 2
2

P 2
3

P 1
1

– (−1,−0.96) (0.56,−0.18) (−0.83,−0.01) (0.97,−0.57) (−1, 0.37)
P 1
2

(0.83, 0.88) – (−1,−0.97) (−0.65, 0.99) (−0.19, 0.18) (0.96, 0.14)
P 1
3

(−1,−1) (0.96, 0.02) – (1,−0.03) (−1, 0.16) (−0.96, 0.05)
P 2
1

(−0.69, 0.37) (0.93,−0.74) (−1,−0.24) – (−0.99,−0.91) (−0.04,−0.09)
P 2
2

(−0.97, 0.98) (0.15, 0.38) (1,−0.65) (0.76, 0.61) – (−1,−0.96)
P 2
3

(1,−0.31) (−1,−0.11) (−0.67, 0.23) (−1,−0.91) (0.97,−0.04) –

Table S7: Calculated regulation-detection scores for the mixed repressilator example (Fig. 4C).

hER POLII TRIP1 HDAC

hER – (−0.78, 1) (−0.94,−0.92) (−0.41,−0.92)
POLII (0.91,−0.99) – (−0.99,−0.49) (−0.97,−0.72)
TRIP1 (0.87, 0.58) (0.93,−0.10) – (−0.73, 0.66)
HDAC (0.80, 1) (0.92, 0.86) (0.88,−0.23) –

Table S8: Calculated regulation-detection scores for the estradiol example (Fig. 4D).
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